物理 三角函数公式
本帖用作总结和$LaTeX$练习
$\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$
$\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$
$\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$
$\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$
$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$
$\cos A \cos B = \frac{1}{2} [\cos(A-B) + \cos(A+B)]$
$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$
万能公式
$ t = \tan\left(\frac{x}{2}\right) $,
$\sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}, \quad \tan x = \frac{2t}{1-t^2}$
辅角公式
$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)$
其中 $ \varphi = \arctan\left(\frac{b}{a}\right) $
三倍角公式
$\sin 3x = 3 \sin x - 4 \sin^3 x$
$\cos 3x = 4 \cos^3 x - 3 \cos x$
半角公式
$\sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos x}{2}}, \quad \cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos x}{2}}$
$\cos A + \cos B + \cos C = 1 + 4 \sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)$
$\tan A + \tan B + \tan C = \tan A \tan B \tan C$\sin(2A) + \sin(2B) + \sin(2C) = 4 \sin A \sin B \sin C
平方
$\sin^2 x + \cos^2 x = 1$
$1 + \tan^2 x = \sec^2 x$
$1 + \cot^2 x = \csc^2 x$
降幂公式
$\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}$
和角公式
$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
不等式
$|\sin x| \leq 1, \quad |\cos x| \leq 1$
Jensen 不等式应用(凸函数)
如:在 $ (0, \pi) $ 上
$\frac{\sin A + \sin B + \sin C}{3} \leq \sin\left(\frac{A+B+C}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$
当且仅当 $ A = B = C = \frac{\pi}{3} $ 取等。
若 $ A + B + C = \pi $,则:
$\sin A + \sin B + \sin C = 4 \cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right)$
$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$