物理 【广义相对论速成版】2. Einstein引力场方程 2.4 Einstein引力场方程


1. Einstein引力场方程的建立
Einstein引力场方程是广义相对论的核心,它是在以下几个假设的基础上建立起来的:
(1) 有引力场存在的时空为四维Riemann流形,即:度规张量$g_{\mu\nu}$描述引力场的函数,$g_{\mu\nu}$共有$10$个分量;
(2) 产生引力场的物质源(引力场以外的,引力场也是物质,哲学上所有客观存在都是物质)为物质的能量、动量张量$T^{\mu\nu}$,它是Riemann上的二级对称张量;
(3) 引力场方程是由Riemann曲率张量组成的Einstein张量
$$G^{\mu \nu}=R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R$$
构成的,与$T^{\mu\nu}$成正比
$$R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R=\frac{8 \pi G}{c^{4}} T^{\mu \nu}$$
$G$为万有引力常数,成为Einstein引力场方程,它是$g_{\mu\nu}$的二阶非线性偏微分方程。
由Bianchi等式知道
$$\nabla_{i^{2}} G^{\mu \nu}=\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)=0$$
故$T^{\mu\nu}$的协变散度为零
$$\nabla_{\mu} T^{\mu \nu}=0, \quad \mu, \nu=1,2,3,0$$
2002年最新实验数据
$$G=6.6742 \times 10^{-11} m^{3} k g^{-1} s^{-2}$$
2. $\nabla_{\mu}T^{\mu\nu}=0$的内涵
$\nabla_{\mu}T^{\mu\nu}=0$与能量动量守恒定律有关,它还隐含物质运动方程,$T^{\mu\nu}$是产生引力场的物质源,但当一个质点在引力场$g_{\mu\nu}$中运动时
$$T^{\mu \nu}=\rho c^{2} u^{\mu} u^{\nu}, \quad \rho=m \delta^{3}(x-x(s)), \quad u^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}$$
$$\nabla_{\mu}\left(\rho c^{2} u^{\mu} u^{\nu}\right)=0$$
$$\nabla_{\mu}\left(\rho c^{2} u^{\mu}\right) u^{\nu}+u^{\mu} \nabla_{\mu}\left(\rho c^{2} u^{\nu}\right)=0$$
$\rho u^{\mu}$为质点的物质密度流
$$j^{\mu}=\rho u^{\mu}$$
若$j^{\mu}$为守恒流
$$\nabla j^{\mu}=0$$
则
$$u^{\mu} \nabla_{\mu} u^{\nu}=0$$
或改写为
$$u^{\mu} \nabla_{\mu} u^{\lambda}=0, \quad \lambda=1,2,3,0$$
$$u^{\mu}\left(\partial_{\mu} u^{\lambda}+\Gamma_{\mu \nu}^{\lambda} u^{\nu}\right)=0$$
$$u^{\mu} \partial_{\mu} u^{\lambda}+\Gamma_{\mu \nu}^{\lambda} u^{\mu} u^{i \nu}=0$$
但因
$$u^{\prime \prime}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}$$
$$u^{\mu} \partial_{\mu} u^{\lambda}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} \frac{\partial u^{\lambda}}{\partial x^{\mu}}=\frac{\mathrm{d} u^{\lambda}}{\mathrm{d} s}$$
故
$$\frac{\mathrm{d} u^{\lambda}}{\mathrm{d} s}+\Gamma_{\mu \nu}^{\lambda} u^{\mu} u^{\nu}=0$$
将$u^{\lambda}=\frac{\mathrm{d}x^{\lambda}}{\mathrm{d}s}$代入上式
$$\frac{\mathrm{d}^{2} x^{\lambda}}{\mathrm{d} s^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} s}=0$$
此即短程线方程也。因此质点运动规律是短程线。从这个观点看,前一节内容也不是假设,它包含在Einstein引力场方程之内。
3. Newton近似下的静态引力场方程
考虑引力源能量动量张量
$$T^{\mu \nu}=\rho c^{2} u^{\mu} u^{\nu}$$
$\rho$为引力物质源质量密度
$$u^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}$$
对静止源,$u^{i}=0,i=1,2,3$,故$T^{\mu\nu}$中不为零的分量仅有
$$T^{00}=\rho c^{2} u^{0} u^{0}=\rho c^{2} \frac{\mathrm{d} x^{0}}{\mathrm{d} s} \frac{\mathrm{d} x^{0}}{\mathrm{d} s}, \quad x^{0}=c t$$
即
$$T^{00}=\rho c^{4}\left(\frac{\mathrm{d} t^{0}}{\mathrm{d} s}\right)^{2}$$
由于
$$\mathrm{d} s^{2}=-g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$$
$$g_{\mu \nu} u^{\mu} u^{\nu}=-1, \quad u^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}$$
$u^{i}=0,i=1,2,3$时
$$g_{00} \frac{\mathrm{d} x^{0}}{\mathrm{d} s} \frac{\mathrm{d} x^{0}}{\mathrm{d} s}=-1$$
由于$x^{0}=ct$
$$g_{00} c^{2}\left(\frac{\mathrm{d} t^{0}}{\mathrm{d} s}\right)^{2}=-1$$
则
$$\left(\frac{\mathrm{d} t^{0}}{\mathrm{d} s}\right)^{2}=-\frac{1}{c^{2}} \frac{1}{g_{00}}$$
代入
$$T^{00}=\rho c^{4}\left(\frac{\mathrm{d} t^{0}}{\mathrm{d} s}\right)^{2}$$
得
$$T^{00}=-\rho c^{2} \frac{1}{g_{00}}$$
$$T_{\nu}^{\mu}=g_{\nu \lambda} T^{\lambda \mu}$$
由于$T^{\lambda 0}=T^{0\lambda}=0$,故
$$T_{0}^{0}=g_{0 \lambda} T^{\lambda 0}=g_{0 \mathrm{U}} T^{00}$$
故
$$T_{0}^{0}=-\rho c^{2}$$
Einstein引力场方程
$$R^{\mu \lambda}-\frac{1}{2} g^{\mu \lambda} R=-\frac{8 \pi G}{c^{4}} T^{\mu \lambda}$$
将上式诚意$g_{\nu\lambda}$,由$g_{\nu\lambda}R^{\mu\lambda}=R_{\nu}^{\mu},g_{\nu\lambda}T^{\mu\lambda}=T_{\nu}^{\mu}$,且$g_{\nu\lambda}g^{\mu\lambda}=\delta_{\nu}^{\mu}$,可得
$$R_{\nu}^{\mu}-\frac{1}{2} \delta_{\nu}^{\mu} R=-\frac{8 \pi G}{c^{4}} T_{\nu}^{\mu}$$
则
$$R_{\mu}^{\mu}-\frac{1}{2} \delta_{\mu}^{\mu} R=-\frac{8 \pi G}{c^{4}} T_{\mu}^{\mu}$$
令$T_{\mu}^{\mu}=T$,且
$$R_{\mu}^{\mu}=g_{\mu \lambda} R^{\mu \lambda}=R$$
由此可将Einstein方程化为
$$R-2 R=-\frac{8 \pi G}{c^{4}} T,\quad \delta_{\mu}^{\mu}\text{中}\mu\text{求和}$$
故
$$R=\frac{8 \pi G}{c^{4}} T$$
$$R_{\nu}^{\mu}=-\frac{8 \pi G}{c^{4}}\left(T_{\nu}^{\mu}-\frac{1}{2} \delta_{\nu}^{\mu} T\right)$$
对前面的
$$T^{\mu \nu}=\rho c^{2} u^{\mu} u^{\nu}$$
故
$$T=g_{i \nu} T^{\mu \nu}=\rho c^{2} g_{\mu \nu} u^{\mu} u^{\nu}$$
可得
$$T=-\rho c^{2} g_{\mu \nu}$$
由此可知
$$R_{0}^{0}=-\frac{8 \pi G}{c^{4}}\left(T_{0}^{0}-\frac{1}{2} T\right)$$
又$T_{0}^{0}=-\rho c^{2}$,故
$$R_{0}^{0}=-\frac{8 \pi G}{c^{4}}\left(-\frac{1}{2} \rho c^{2}\right)$$
因此
$$R_{0}^{0}=\frac{4 \pi G}{c^{2}} \rho c^{2}$$
$$R_{\sigma \mu \nu}^{\lambda}=\partial_{\mu} \Gamma_{\nu \sigma}^{\lambda}-\partial_{\nu} \Gamma_{\mu \sigma}^{\lambda}+\Gamma_{\mu \alpha}^{\lambda} \Gamma_{\nu \sigma}^{\alpha}-\Gamma_{\nu \alpha}^{\lambda} \Gamma_{\mu \sigma}^{\alpha}$$
Ricci张量
$$R_{\sigma \nu}=R_{\sigma \lambda \nu}^{\lambda},\quad \text{二阶张量}$$
$$R_{\sigma \nu}=\partial_{\lambda} \Gamma_{\nu \sigma}^{\lambda}-\partial_{\nu} \Gamma_{\lambda \sigma}^{\lambda}+\Gamma_{\lambda a}^{\lambda} \Gamma_{\nu \sigma}^{\alpha}-\Gamma_{\nu \alpha}^{\lambda} \Gamma_{\lambda \sigma}^{\alpha}$$
$$R_{r \nu}=\partial_{\lambda} \Gamma_{\nu \mu}^{\lambda}-\partial_{\nu} \Gamma_{\lambda \mu}^{\lambda}+\Gamma_{\lambda \alpha}^{\lambda} \Gamma_{\nu \mu}^{\alpha}-\Gamma_{\nu \alpha}^{\lambda} \Gamma_{\lambda \mu}^{\alpha}$$
在Newton近似下
$$g_{00}=-\left[1+\frac{2 \phi}{c^{2}}\right], \quad g_{i j}=\delta_{i j}, \quad g_{i 0}=g_{0 i}=0$$
$$g^{00}=\frac{1}{g_{00}}=-\frac{1}{1+\frac{2 \delta}{c^{2}}}=-\left(1-\frac{2 \phi}{c^{2}}\right), \quad g^{i j}=\delta^{i j}, \quad g^{i 0}=g^{0 i}=0$$
在Newton近似下$\Gamma_{\mu\nu}^{\lambda}$不为零的分量仅有
$$\Gamma_{00}^{i}=-\frac{1}{2} \partial_{i} h_{00}, \quad \Gamma_{0 i}^{0}=-\frac{1}{2} \partial_{i} h_{00}, \quad h_{00}=-\frac{2 \phi}{c^{2}}$$
故不为零的$\Gamma_{\mu\nu}^{\lambda}$为
$$\Gamma_{00}^{i}=\frac{1}{c^{2}} \partial_{i} \phi, \quad \Gamma_{0 i}^{0}=\frac{1}{c^{2}} \partial_{i} \phi$$
从$R_{\mu\nu}$式,$\mu,\nu=0$时
$$R_{00}=\partial_{\lambda} \Gamma_{00}^{\lambda}-\partial_{0} \Gamma_{\lambda 0}^{\lambda}+\Gamma_{\lambda \alpha}^{\lambda} \Gamma_{00}^{\alpha}-\Gamma_{0 \alpha}^{\lambda} \Gamma_{\lambda 0}^{\alpha}$$
静态情况,$\phi$与时间无关,$\Gamma_{\mu\nu}^{\lambda}$与时间无关,则在Newton近似下
$$R_{00}=\partial_{i} \Gamma_{00}^{i}-0+\Gamma_{0 i}^{0} \Gamma_{00}^{i}-\Gamma_{0 i}^{0} \Gamma_{00}^{i}-\Gamma_{00}^{i} \Gamma_{i 0}^{0}$$
略去$\frac{\phi}{c^{2}}$的平方项,则
$$R_{00}=\partial_{i} \Gamma_{00}^{i}=\frac{1}{c^{2}} \partial_{i} \partial_{i} \phi$$
即
$$R_{00}=\frac{1}{c^{2}} \Delta \phi, \quad \Delta=\partial_{i} \partial_{i}$$
$$R_{0}^{0}=g^{00} R_{00}, \quad g^{00}=-\left(1-\frac{2 \phi}{c^{2}}\right)$$
略去$\frac{\phi}{c^{2}}$的高次项
$$R_{0}^{0}=-\frac{1}{c^{2}} \Delta \phi$$
但由于
$$R_{0}^{0}=\frac{4 \pi G}{c^{2}} \rho$$
故$\phi$应满足下列方程
$$\Delta\phi=-4 \pi G \rho$$
对静止的点质量源
$$\rho=M \delta^{3}(\vec{r})$$
故
$$\Delta \phi=4 \pi G M \delta^{3}(\vec{r})$$
由Green函数知
$$\Delta \frac{1}{r}=-4 \pi \delta^{3}(\vec{r})$$
因此,得到
$$\phi=-\frac{G M}{r}$$
故Einstein建立的广义相对论包含了Newton第二定律(短程线)和引力公式,且度规是决定引力场的函数
$$g_{00}=-\left(1+\frac{2 \phi}{c^{2}}\right)=-\left(1-\frac{2 G M}{r c^{2}}\right)$$