物理 【广义相对论速成版】2. Einstein引力场方程 2.2 短程线


1. 短程线方程
设一质点在Riemann时空中曲线$C$上运动,$C$的曲线方程为
$$x^{\mu}=x^{\mu}(\sigma),\qquad \mu=i, 2, \cdots, n$$
$\sigma$为曲线的参数。定义曲线的切矢
$$u^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} \sigma}=\dot{x}^{\mu}$$
由于
$$\mathrm{d} s^{2}=\epsilon g_{\mu\nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$$
则对一个给定的曲线$C$上的两点$\sigma_{1}$和$\sigma_{2}$之间的弧长
$$\ell=\int_{\sigma_{1}}^{\sigma_{2}} \sqrt{e g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}} \mathrm{d} \sigma$$
现在问给定$g_{\mu\nu}$的流形上怎样的曲线使$\ell$最小?这样的曲线称为Riemann流形上的短程线。
令
$$F(x, \dot{x})=\sqrt{e g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}$$
则
$$\ell=\int_{\sigma_{1}}^{\sigma_{2}} F(x, \dot{x}) \mathrm{d} \sigma$$
能使$\ell$为极值的曲线$x^{\mu}=x^{\mu}(\sigma)$,由变分法理论可知$F(x,\dot{x})$应该满足Euler方程
$$\frac{\partial F}{\partial x^{\mu}}-\frac{\mathrm{d}}{\mathrm{d} \sigma} \frac{\partial F}{\partial \dot{x}^{\mu}}=0, \quad \dot{x}^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} \sigma}$$
由于
$$\frac{\partial F}{\partial x^{\mu}}=\frac{1}{2} \frac{1}{\sqrt{e g_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}}} e \partial_{\mu} g_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}$$
$$\frac{\partial F}{\partial \dot{x}^{\mu}}=\frac{1}{2} \frac{1}{\sqrt{e g_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}}}\left[e g_{\mu \beta} \dot{x}^{\beta}+e g_{\alpha \mu} \dot{x}^{\alpha}\right]$$
$$\sqrt{e g_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}}=\frac{\mathrm{d} s}{\mathrm{d} \sigma}$$
$$\frac{\mathrm{d}}{\mathrm{d} \sigma} \frac{\partial F}{\partial \dot{x}^{\mu}}=\frac{1}{2} \frac{e}{\frac{\mathrm{d} s}{\mathrm{d} \sigma}}\left[\partial_{\nu} g_{\mu \beta} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \sigma} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} \sigma}+\partial_{\nu} g_{\alpha \mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \sigma} \frac{\mathrm{d} x^{\alpha}}{\mathrm{d} \sigma}+2 g_{\alpha \mu} \frac{\mathrm{d}^{2} x^{\alpha}}{\mathrm{d} \sigma^{2}}\right]-\frac{e}{2}\left[g_{\mu \beta} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} \sigma}+g_{\alpha \mu} \frac{\mathrm{d} x^{\alpha}}{\mathrm{d} \sigma}\right] \frac{\frac{\mathrm{d}^{2} s}{\mathrm{d} \sigma^{2}}}{\left(\frac{\mathrm{d} s}{\mathrm{d} \sigma}\right)^{2}}$$
将上面三式代入Euler方程,并用Christoffel符号(Riemann联络)
$$\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \tau}\left(\partial_{\mu} g_{\sigma \nu}+\partial_{\nu} g_{\sigma \mu}-\partial_{\sigma} g_{\mu \nu}\right)$$
可得
$$\frac{\mathrm{d}^{2} x^{\lambda}}{\mathrm{d} \sigma^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \sigma} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \sigma}-\frac{\mathrm{d} x^{\lambda}}{\mathrm{d} \sigma }\frac{\frac{\mathrm{d}^{2} s}{\mathrm{d} \sigma^{2}}}{\frac{\mathrm{d} s}{\mathrm{d} \sigma}}=0$$
如在上式中令$\sigma=s$,则
$$\frac{\mathrm{d} s}{\mathrm{d} \sigma}=1, \quad \frac{\mathrm{d}^{2} s}{\mathrm{d} \sigma^{2}}=0$$
由此得到典型的短程线方程
$$\frac{\mathrm{d}^{2} x^{\lambda}}{\mathrm{d} s^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} s}=0$$
解此方程需给定的初始条件
$$x^{\mu}(0)=a^{\mu}, \quad \dot{x}^{\mu}(0)=b^{\mu}$$
2. 矢量场的平行移动
在Euclid空间中,单位矢量场$v^{\lambda}=v^{\lambda}(x)$在邻近两点$x$和$x+\mathrm{d}x$平行的定义
$$v^{\lambda}(x+\Delta x)=v^{\lambda}(x)$$
即
$$\mathrm{d} v^{\lambda}(x)=0, \quad v^{\lambda} v^{\lambda}=I$$
当$v^{\lambda}$沿曲线$C:x^{\mu}=x^{\mu}(s)$为平行的条件可写成
$$\frac{\partial v^{\lambda}}{\partial x^{\mu}} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}=0, \quad u^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}\text{为曲线的切矢}$$
即
$$\left(\partial_{\mu} v^{\lambda}\right) u^{\mu}=0$$
考虑下图的球面,在北极$p$点的切矢按Euclid空间平移法则平移到赤道时$v$必与球面垂直,即:$v^{\lambda}$已不再属于球面。
因此对于一个流形上的矢量,上述平行移动的定义肯定是不能成立的,因此,平行与平移的概念应修改。
在Riemann几何中,定义新的平移条件(就是把普通微商变为协变微商):
$$\left(\nabla_{\mu} v^{\lambda}\right) \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}=0$$
即
$$\left(\nabla_{\mu} v^{\lambda}\right) u^{\mu}=0$$
协变微商定义了平移,也即Riemann联络定义了平移。其中
$$\nabla_{\mu} v^{\lambda}=\partial_{\mu} v^{\lambda}+\Gamma_{\mu \nu}^{\lambda} v^{\nu}$$
一个曲线的切矢$u^{\lambda}=\frac{\mathrm{d}x^{\lambda}}{\mathrm{d}s}$沿曲线平行移动的条件为
$$\left(\nabla_{\mu} u^{\lambda}\right) u^{\mu}=0$$
由于
$$\nabla_{\mu} u^{\lambda}=\partial_{\mu} u^{\lambda}+\Gamma_{\mu \nu}^{\lambda} u^{\nu}$$
故
$$\left(\nabla_{\mu} u^{\lambda}\right) u^{\mu}=\left(\partial_{\mu} u^{\lambda}\right) u^{\mu}+\Gamma_{\mu \nu}^{\lambda} u^{\nu} u^{\mu}=0$$
上式右端第一项
$$\left(\partial_{\mu} u^{\lambda}\right)=\frac{\partial u^{\lambda}}{\partial x^{\mu}} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s}=\frac{\mathrm{d} u^{\lambda}}{\mathrm{d} s}$$
故
$$\frac{\mathrm{d} u^{\lambda}}{\mathrm{d} s}+\Gamma_{\mu \nu}^{\lambda} u^{\nu} u^{\mu}=0$$
因此一曲线的切矢在不同点皆为平行的,此曲线在Riemann几何中称为测地线(Geodesic),故测地线就是短程线。