$因为\frac{\sqrt{(n+1)^2-1}-\sqrt{n^2-1}}{n(n+1)}=\frac{1}{n}\cdot \frac{\sqrt{n^2-1}}{n+1}-\frac{1}{n+1}\cdot\frac{\sqrt{n^2-1}}{n}$
$记\sin{a_n}=\frac{1}{n},n\in(0,\frac{\pi}{2}],n\in N^*$
$则\sin{a_n}\cdot\cos{a_{n+1}}-\sin{a_{n+1}}\cdot\cos{a_n}=\sin{(a_n-a_{n+1})}$
$故原式=a_1-a_2+a_2-a_3+\cdots +a_n-a_{n+1}$
$~~~~~=a_1-a_{n+1}=\frac{\pi}{2}-a_{n+1}=\arccos{\frac{1}{n+1}}$