[TINY NSD]三角系列续集...

物理
[TINY NSD]三角系列续集的续集

用户头像
江南风光好 更新于2025-7-24 10:09:03

${2.三角不等式(高考党慎入)}$

${2.1~\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2} \le \frac{3}{2}}$

${[证明]令f(x)=\sin x(0 \lt x \lt \frac{\pi}{2}),则f''(x)=-\sin x \lt 0}$

${又\frac{A}{2},\frac{B}{2}, \frac{C}{2} \in (0, \frac{\pi}{2})且\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=\frac{\pi}{2}}$

${由Jensen不等式,\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \le 3\sin\frac{\pi}{6} =\frac{3}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.2~\cos \frac{A}{2}+\cos\frac{B}{2}+\cos \frac{C}{2} \le \frac{3\sqrt{3}}{2}}$

${[证明]令f(x)=\cos x(0 \lt x \lt \frac{\pi}{2}),则f''(x)=-\cos x \lt 0}$

${又\frac{A}{2},\frac{B}{2}, \frac{C}{2} \in (0, \frac{\pi}{2})且\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=\frac{\pi}{2}}$

${由Jensen不等式,\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \le 3\cos\frac{\pi}{6} =\frac{3\sqrt{3}}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.3~\tan \frac{A}{2}+\tan\frac{B}{2}+\tan \frac{C}{2} \ge \sqrt{3}}$

${[证明]令f(x)=\tan x(0 \lt x \lt \frac{\pi}{2}),则f''(x)=\frac{2\sin x}{\cos^3 x} \gt 0}$

${又\frac{A}{2},\frac{B}{2}, \frac{C}{2} \in (0, \frac{\pi}{2})且\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=\frac{\pi}{2}}$

${由Jensen不等式,\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \ge 3\tan\frac{\pi}{6} =\sqrt{3}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.4~\sin \frac{A}{2} \sin \frac{B}{2}\sin \frac{C}{2} \le \frac{1}{8}}$

${[证明]由AM-GM不等式与2.1,\sin\frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le (\frac{\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}}{3})^3 \le (\frac{1}{2})^3 =\frac{1}{8}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.5~\cos \frac{A}{2} \cos \frac{B}{2}\cos \frac{C}{2} \le \frac{3\sqrt{3}}{8}}$

${[证明]由AM-GM不等式与2.1,\cos\frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \le (\frac{\cos \frac{A}{2}+\cos\frac{B}{2}+\cos \frac{C}{2}}{3})^3 \le (\frac{\sqrt{3}}{2})^3=\frac{3\sqrt{3}}{8}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$                  

${2.6~\tan\frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \le \frac{\sqrt{3}}{9}}$

${[证明]由1.8与AM-GM不等式,\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} =\sqrt{\tan^2 \frac{A}{2}\tan^2\frac{B}{2}\tan^2\frac{C}{2}}}$

${\le \sqrt{(\frac{\tan\frac{A}{2} \tan\frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2}\tan\frac{A}{2}}{3})^3}=(\frac{1}{3})^\frac{3}{2}=\frac{\sqrt{3}}{9}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.7~\sin A+\sin B+\sin C\le\frac{3\sqrt{3}}{2}}$

${[证法1]令f(x)=\sin x(0 \lt x \lt \pi),则f''(x)=-\sin x\lt 0}$

${而A, B, C \in(0,\pi)且A+B+C=\pi}$

${由Jensen不等式,\sin A+\sin B+\sin C \le 3\sin \frac{\pi}{3}=\frac{3\sqrt{3}}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${[证法2]由2.5及1.1,\sin A+\sin B+\sin C=4\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \le 4 \cdot\frac{3\sqrt{3}}{8}=\frac{3\sqrt{3}}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.8~\cos A+\cos B+\cos C \le\frac{3}{2}}$

${[证法1]不妨设A \ge B \ge C,则B \lt \frac{\pi}{2}, C\le\frac{\pi}{3}, A \ge \frac{\pi}{3}}$

${令f(x)=\cos x+\cos(\theta-x), 其中\theta \in (\frac{\pi}{2}, \pi), x\in(0, \theta)}$

${则f'(x)=\sin(\theta-x)-\sin x=2\cos \frac{\theta}{2} \sin (\frac{\theta}{2}-x)}$

${由于\sin\frac{\theta}{2}\lt 0, \cos \frac{\theta}{2} \lt 0, f(x)在(0,\frac{\theta}{2})时单调递增,在(\frac{\theta}{2},\theta)单调递减}$

${令\theta=A+C, 则\frac{\pi}{2} \lt \theta \lt \pi}$

${(1)若\frac{\pi}{2}\lt\theta \le \frac{2\pi}{3},则A \ge \frac{\pi}{3}\ge\frac{\theta}{2}}$

${故f(A) \le f(\frac{\pi}{3}),即\cos A+\cos C \le \cos\frac{\pi}{3}+\cos (\frac{2\pi}{3}-B)}$

${令\theta=\frac{2\pi}{3},则f(B) \le f(\frac{\pi}{3}),即\cos B+\cos(\frac{2\pi}{3}-B) \le 2\cos \frac{\pi}{3}}$

${故\cos A+\cos B+\cos C \le 3\cos \frac{\pi}{3} =\frac{3}{2}}$

${(2)若\frac{2\pi}{3}\lt\theta \lt \pi,则C \le \frac{\pi}{3}\lt\frac{\theta}{2}}$

${故f(C) \lt f(\frac{\pi}{3}),即\cos A+\cos C \lt \cos\frac{\pi}{3}+\cos (\frac{2\pi}{3}-B)}$

${令\theta=\frac{2\pi}{3},则f(B) \le f(\frac{\pi}{3}),即\cos B+\cos(\frac{2\pi}{3}-B) \le 2\cos \frac{\pi}{3}}$

${故\cos A+\cos B+\cos C \lt 3\cos \frac{\pi}{3} =\frac{3}{2}}$

${综上,总有\cos A+\cos B+\cos C \le \frac{3}{2},取等当且仅当A=B=C=\frac{\pi}{3}}$

${[证法2]不妨设A \ge B \ge C}$

${则0\lt\frac{A+B}{2} \lt \frac{\pi}{2}, \cos \frac{A+B}{2} \gt 0}$

${\cos A+\cos B=2\cos \frac{A+B}{2}\cos\frac{A-B}{2} \le 2\cos \frac{A+B}{2}}$

${令f(x)=\cos x(0\lt x \lt \frac{\pi}{2}),则f''(x)=-\cos x \lt 0}$

${而\frac{A+B}{2},C\in (0, \frac{\pi}{2})}$

${故由Jensen不等式,2\cos \frac{A+B}{2} +\cos C \le 3\cos \frac{\pi}{3}=\frac{3}{2}}$

${从而\cos A+\cos B+\cos C \le 2\cos \frac{A+B}{2}+\cos C \le \frac{3}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${[证法3]由2.4及1.2,\cos A+\cos B+\cos C=4\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}+1 \le 4 \cdot\frac{1}{8}+1=\frac{3}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.9~\tan A+\tan B+\tan C \ge 3\sqrt{3} 或 \lt 0}$

${[证明]若\tan A+\tan B+\tan C \ge 0}$

${则由AM-GM不等式,\tan A+\tan B+\tan C \ge 3\sqrt[3]{\tan A\tan B\tan C}=3\sqrt[3]{\tan A+\tan B+\tan C}(由1.3)}$

${解得\tan A+\tan B+\tan C \ge 3\sqrt{3}}$

${故\tan A+\tan B+\tan C \lt 0 或 \ge 3\sqrt{3},取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.10~\sin A \sin B \sin C \le\frac{3\sqrt{3}}{8}}$

${[证明]由2.7和AM-GM不等式,\sin A\sin B \sin C \le (\frac{\sin A+\sin B+\sin C}{3})^3 \le \frac{3\sqrt{3}}{8}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.11~\tan A \tan B \tan C \ge 3\sqrt{3} 或\lt 0}$

${[证明]由1.5和2.9,\tan A \tan B \tan C =\tan A+\tan B+\tan C \ge 3\sqrt{3} 或 \lt 0}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.12~-1 \lt \cos A\cos B\cos C \le\frac{1}{8}}$

${[证法1]若A,B,C \in (0,\frac{\pi}{2}),由2.8和AM-GM不等式,\cos A \cos B \cos C \le(\frac{\cos A+\cos B+\cos C}{3})^3 \le \frac{1}{8}}$

${否则,不妨设A \ge B \ge C,由于B \lt \frac{\pi}{2},必有A \ge\frac{\pi}{2},从而\cos A \cos B \cos C \le 0 \lt\frac{1}{8}}$

${而由于A,B,C \in(0,\pi),有|\cos A|, |\cos B|, |\cos C| \lt 1}$

${故\cos A \cos B\cos C \ge -|\cos A \cos B \cos C| \gt -1}$

${综上,-1 \lt \cos A\cos B\cos C \le \frac{1}{8},右侧取等当且仅当A=B=C=\frac{\pi}{3}}$

${[证法2]由2.10及2.11:}$

${(1)若\tan A \tan B\tan C \lt 0,则由于\sin A \sin B \sin C \gt 0,有\cos A \cos B \cos C=\frac{\sin A \sin B \sin C}{\tan A \tan B \tan C} \lt 0 \lt \frac{1}{8}}$

${(2)若\tan A \tan B\tan C \ge 3\sqrt{3},则由于0 \lt \sin A \sin B \sin C \le\frac{3\sqrt{3}}{8}}$

${有\cos A \cos B\cos C=\frac{\sin A \sin B \sin C}{\tan A \tan B \tan C} \le\frac{\frac{3\sqrt{3}}{8}}{3\sqrt{3}}=\frac{1}{8}}$

${(3)若\tan A \tan B\tan C无意义,则三角形为直角三角形,显然\cos A \cos B \cos C =0 \lt\frac{1}{8}}$

${而由于A,B,C \in(0,\pi),有|\cos A|, |\cos B|, |\cos C| \lt 1}$

${故\cos A \cos B\cos C \ge -|\cos A \cos B \cos C| \gt -1}$

${综上,-1 \lt \cos A\cos B\cos C \le \frac{1}{8},右侧取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.13~\sin 2A+\sin 2B+\sin 2C \le\frac{3\sqrt{3}}{2}}$

${[证明]由1.4及2.10,\sin2A+\sin 2B+\sin 2C =4\sin A \sin B \sin C \le \frac{3\sqrt{3}}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.14~\cos 2A+\cos 2B+\cos 2C \ge-\frac{3}{2}}$

${[证法1]由1.5及2.12,\cos2A+\cos 2B+\cos 2C=-1-4\cos A \cos B \cos C \ge -1-4\cdot \frac{1}{8}=-\frac{3}{2}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${[证法2]不妨设A \ge B \ge C, 则B \lt \frac{\pi}{2}, 2(A+C)\in (\pi, 2\pi),A \ge \frac{\pi}{3} \ge C}$

${令f(x)=\cos x+\cos (\theta-x),其中\theta \in (\pi, 2\pi), x \in (0,\theta)}$

${则f'(x)=\sin(\theta-x)-\sin x=2\cos \frac{\theta}{2} \sin(\frac{\theta}{2}-x)}$

${而\cos\frac{\theta}{2} \lt 0,故f(x)在(0,\frac{\theta}{2})单调递减,(\frac{\theta}{2}, \theta)单调递增}$

${令\theta=2(A+C)}$

${(1)若\pi \lt\theta \le \frac{4\pi}{3},则2A \ge \frac{2\pi}{3} \ge\frac{\theta}{2}}$

${故\cos 2A+\cos 2C=f(2A) \ge f(\frac{2\pi}{3}) =\cos \frac{2\pi}{3}+\cos (\theta-\frac{2\pi}{3})=\cos\frac{2\pi}{3}+\cos (\frac{4\pi}{3}-2B)}$

${又令\theta=\frac{4\pi}{3},则f(2B) \le f(\frac{2\pi}{3}),\cos(\frac{4\pi}{3}-2B)+ \cos 2B \ge2\cos \frac{2\pi}{3}}$

${故\cos 2A+\cos2B+\cos 2C \ge \cos \frac{2\pi}{3}+\cos (\frac{4\pi}{3}-2B) +\cos 2B \ge 3\cos\frac{2\pi}{3}=-\frac{3}{2}}$

${(2)若\frac{4\pi}{3}\lt \theta \lt \pi,则2C \lt \frac{2\pi}{3} \le\frac{\theta}{2}}$

${故\cos 2A+\cos 2C=f(2C) \gt f(\frac{2\pi}{3}) =\cos \frac{2\pi}{3}+\cos (\theta-\frac{2\pi}{3})=\cos\frac{2\pi}{3}+\cos (\frac{4\pi}{3}-2B)}$

${又令\theta=\frac{4\pi}{3},则f(2B) \le f(\frac{2\pi}{3}),\cos(\frac{4\pi}{3}-2B)+ \cos 2B \ge2\cos \frac{2\pi}{3}}$

${故\cos 2A+\cos2B+\cos 2C \gt \cos \frac{2\pi}{3}+\cos (\frac{4\pi}{3}-2B) +\cos 2B \ge 3\cos\frac{2\pi}{3}=-\frac{3}{2}}$

${综上,总有\cos 2A+\cos2B+\cos 2C \ge -\frac{3}{2},取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.15~\sin^2A+\sin^2B+\sin^2C \le\frac{9}{4}}$

${[证法1]由1.7及2.12,\sin^2A+\sin^2B+\sin^2C=2+2\cos A \cos B \cos C \le 2+2 \cdot \frac{1}{8}=\frac{9}{4}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

${[证法2](来自数之谜)设z_1=1,z_2=e^{2iA}, z_3=e^{2i(A+B)}=3^{-2iC}}$

${由几何关系,易知|z_1|=|z_2|=|z_3|=1,且|z_1-z_2|=2\sin A, |z_2-z_3|=2\sin B, |z_3-z_1|=2\sin C}$

${从而\sin^2 A+\sin^2B+\sin^2 C =\frac{|z_1-z_2|^2+|z_2-z_3|^2+|z_3-z_1|^2}{4}}$

${而|z_1-z_2|^2+|z_2-z_3|^2+|z_3-z_1|^2=(z_1-z_2)(\overline{z_1}-\overline{z_2})+(z_2-z_3)(\overline{z_2}-\overline{z_3})+(z_3-z_1)(\overline{z_3}-\overline{z_1})}$

${=2(|z_1\overline{z_1}+|z_2|\overline{z_2}+|z_3|\overline{z_3})-(z_1\overline{z_2}+z_2\overline{z_1}+z_2\overline{z_3}+z_3\overline{z_2}+z_3\overline{z_1}+z_1\overline{z_3})}$

${=3(z_1\overline{z_1}+z_2\overline{z_2}+z_3\overline{z_3})-(z_1+z_2+z_3)(\overline{z_1}+\overline{z_2}+\overline{z_3})}$

${=3(|z_1|^2+|z_2|^2+|z_3|^2)-|z_1+z_2+z_3|^2=9-|z_1+z_2+z_3|^2\le 9}$

${故\sin^2 A+\sin^2B+\sin^2 C \le \frac{9}{4},取等当且仅当A=B=C=\frac{\pi}{3}}$

${2.16~\cos^2A+\cos^2B+\cos^2C \ge \frac{3}{4}}$

${[证明]由1.6及2.12,\cos^2A+\cos^2B+\cos^2C=1-2\cos A \cos B \cos C \ge 1-2 \cdot \frac{1}{8}=\frac{3}{4}}$

${取等当且仅当A=B=C=\frac{\pi}{3}}$

收起
8
8
共0条回复
时间正序
回复是交流的起点,交流让学竞赛不孤单