物理 [TINY NSD]三角系列(续):三角形中的关系

${(有同学反映帖子有点卡,所以把不等式移到下一个帖子了)}$
${(以下内容中,A,B,C为三角形三个内角,D为BC边上一点,a,b,c表示对应角所对的边,默认所有式子均有意义)}$
${1.三角恒等式}$
${1.1~\sin A+\sin B+\sin C=4\cos\frac{A}{2}\cos \frac{B}{2} \cos \frac{C}{2}}$
${[证明] \sin A+\sin B+\sin C=\sin A+\sin B+\sin (A+B)}$
${=2\sin\frac{A+B}{2}\cos\frac{A-B}{2}+2\sin\frac{A+B}{2}\cos\frac{A+B}{2}}$
${=2\sin\frac{A+B}{2}(\cos\frac{A+B}{2}+\cos\frac{A-B}{2})}$
${=2\cos\frac{C}{2}\cdot(2\cos\frac{A}{2}\cos\frac{B}{2})}$
${=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}}$
${1.2~\cos A+\cos B+\cos C=4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}+1}$
${[证明]\cos A+\cos B+\cos C=\cos A+\cos B-\cos (A+B)}$
${=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}-(2\cos^2\frac{A+B}{2}-1)}$
${=2\cos\frac{A+B}{2}(\cos\frac{A-B}{2}-\cos\frac{A+B}{2})+1}$
${=2\sin \frac{C}{2}\cdot(2\sin\frac{A}{2}\sin \frac{B}{2})+1}$
${=4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}+1}$
${1.3~\tan A+\tan B+\tan C=\tan A\tan B\tan C}$
${[证明]\tan A+\tan B+\tan C=\tan (A+B)(1-\tan A \tan B)-\tan (A+B)}$
${=-\tan (A+B) \tan A \tan B}$
${=\tan A \tan B \tan C}$
${1.4~\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C}$
${[证明]\sin2A+\sin2B+\sin2C=2\sin(A+B)\cos(A-B)+2\sin C\cos C}$
${=2\sin C\cos (A-B)+2\sin C\cos C}$
${=2\sin C [\cos (A-B)-\cos (A+B)]}$
${=2\sin C \cdot (2 \sin A \sin B)}$
${=4 \sin A\sin B\sin C}$
${1.5~\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C}$
${[证明]\cos2A+\cos2B+\cos2C=2\cos (A+B)\cos (A-B)+2\cos^2 C-1}$
${=-1-2\cos C \cos (A+B)-2\cos (A-B) \cos C}$
${=-1-2\cos C [\cos(A-B)+\cos (A+B)]}$
${=-1-2\cos C \cdot (2\cos A \cos B)}$
${=-1-4\cos A \cos B \cos C}$
${1.6~\cos^2 A+\cos^2 B+\cos^2 C=1-2\cos A\cos B \cos C}$
${[证明]\cos^2A+\cos^2B+\cos^2C=\frac{1+\cos 2A}{2}+\frac{1+\cos 2B}{2}+\frac{1+\cos2C}{2}}$
${=\frac{3}{2}+\frac{\cos2A+\cos2B+\cos2C}{2}}$
${=\frac{3}{2}+\frac{-1-4\cos A \cos B \cos C}{2}(由1.5)}$
${=1-2\cos A \cos B \cos C}$
${1.7~\sin^2 A+\sin^2 B+\sin^2 C=2+2\cos A\cos B \cos C}$
${[证明]\sin^2A+\sin^2B+\sin^2C=\frac{1-\cos 2A}{2}+\frac{1-\cos 2B}{2}+\frac{1-\cos2C}{2}}$
${=\frac{3}{2}-\frac{\cos2A+\cos2B+\cos2C}{2}}$
${=\frac{3}{2}-\frac{-1-4\cos A \cos B \cos C}{2}(由1.5)}$
${=2+2\cos A \cos B \cos C}$
${1.8~\tan \frac{A}{2} \tan\frac{B}{2}+\tan\frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan\frac{A}{2}=1}$
${[证明]\tan\frac{A}{2}\tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2}\tan\frac{A}{2}=\tan \frac{B}{2} (\tan \frac{A}{2}+\tan\frac{C}{2})+\tan\frac{A}{2} \tan \frac{C}{2}}$
${=\tan \frac{B}{2} \tan\frac{A+C}{2}(1-\tan \frac{A}{2} \tan \frac{C}{2})+\tan \frac{A}{2} \tan\frac{C}{2}}$
${=(1-\tan \frac{A}{2}\tan\frac{C}{2})+\tan \frac{A}{2} \tan \frac{C}{2}}$
${=1}$