物理 【广义相对论速成版】1. Riemann几何 1.6 Ricci张量、标曲率和Einstein张量


1. Ricci张量
Ricci张量的定义为
$$R_{\sigma\nu}=R_{~\sigma\lambda\nu}^{\lambda}\qquad \text{二阶张量}$$
或
$$R_{\sigma\nu}=g^{\lambda\mu}R_{\lambda\sigma\mu\nu}$$
由于
$$R_{\lambda\sigma\mu\nu}+R_{\lambda\mu\nu\sigma}+R_{\lambda\nu\sigma\mu}=0$$
乘以$g^{\lambda\mu}$
$$g^{\lambda\mu}R_{\lambda\sigma\mu\nu}+g^{\lambda\mu}R_{\lambda\mu\nu\sigma}+g^{\lambda\mu}R_{\lambda\nu\sigma\mu}=g^{\lambda\mu}R_{\lambda\sigma\mu\nu}+g^{\lambda\mu}R_{\lambda\nu\sigma\mu}=0$$
也即
$$g^{\lambda\mu}R_{\lambda\sigma\mu\nu}-g^{\lambda\mu}R_{\lambda\nu\mu\sigma}=0$$
故
$$R_{\sigma\nu}=R_{\nu\sigma}$$
为对称张量。
2. 标曲率
标曲率的定义为
$$R=g^{\mu\nu}R_{\mu\nu}$$
3. Einstein张量
在Bianchi恒等式
$$\nabla_{\lambda}R_{~\sigma\mu\nu}^{\rho}+\nabla_{\mu}R_{~\sigma\nu\lambda}^{\rho}+\nabla_{\nu}R_{~\sigma\lambda\mu}^{\rho}=0$$
中令$\rho=\mu$,
$$\nabla_{\lambda}R_{~\sigma\mu\nu}^{\mu}+\nabla_{\mu}R_{~\sigma\nu\lambda}^{\mu}+\nabla_{\nu}R_{~\sigma\lambda\mu}^{\mu}=0$$
$$\nabla_{\nu}R_{~\sigma\mu\lambda}^{\mu}=\nabla_{\lambda}R_{~\sigma\mu\nu}^{\mu}+\nabla_{\mu}R_{~\sigma\nu\lambda}^{\mu}$$
$$\nabla_{\nu}R_{\sigma\lambda}=\nabla_{\lambda}R_{\sigma\nu}+\nabla_{\mu}R_{~\sigma\nu\lambda}^{\mu}$$
将上式乘以$g^{\sigma\lambda}$
$$\nabla_{\nu}R=\nabla_{\lambda}g^{\sigma\lambda}R_{\sigma\nu}+\nabla_{\mu}g^{\sigma\lambda}R_{~\sigma\nu\lambda}^{\mu}$$
定义
$$R_{\nu}^{\lambda}=g^{\sigma\lambda}R_{\sigma\nu}$$
且
$$g^{\sigma\lambda}R_{\sigma\lambda}=R$$
$$g^{\sigma\lambda}R_{~\sigma\nu\lambda}^{\mu}=g^{\sigma\lambda}g^{\mu\rho}R_{\rho\sigma\nu\lambda}=g^{\mu\rho}g^{\sigma\lambda}R_{\rho\sigma\nu\lambda}=g^{\mu\rho}R_{\rho\nu}=R_{\nu}^{\mu}$$
故
$$\nabla_{\nu}R=\nabla_{\lambda}R_{\nu}^{\lambda}+\nabla_{\mu}R_{\nu}^{\mu}$$
即
$$\nabla_{\nu}R=2\nabla_{\mu}R_{\nu}^{\mu}$$
$$\nabla_{\mu}R_{\nu}^{\mu}=\frac{1}{2}\nabla_{\nu}R=\frac{1}{2}\delta_{\nu}^{\mu}\nabla_{\mu}R$$
故有
$$\nabla_{\mu}\left(R_{\nu}^{\mu}-\frac{1}{2}\delta_{\nu}^{\mu}R\right)=0$$
$$G_{\nu}^{\mu}=R_{\nu}^{\mu}-\frac{1}{2}\delta_{\nu}^{\mu}R$$
称为Einstein张量,满足
$$\nabla_{\mu}G_{\mu}^{\nu}=0$$
协变散度为零。
令
$$G^{\mu\nu}=g^{\nu\lambda}G_{\lambda}^{\mu}$$
则
$$G^{\mu\nu}=g^{\nu\lambda}\left(R_{\lambda}^{\mu}-\frac{1}{2}\delta_{\lambda}^{\mu}R\right)=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R$$
并且
$$\nabla_{\mu}G^{\mu\nu}=0$$
可直接写成
$$\nabla_{\mu}\left(R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R\right)=0$$