物理 【广义相对论速成版】1. Riemann几何 1.5 Riemann曲率张量(2)


3. Bianchi恒等式(Bianchi Identity)
由于Riemann几何是无挠率的,即:
$$T_{\mu\nu}^{\sigma}=0$$
设$\phi_{\sigma}$是协变矢量,则有
$$[\nabla_{\mu},\nabla_{\nu}]\phi_{\sigma}=R_{~\sigma\mu\nu}^{\rho}\phi_{\rho}$$
我们对上式左作用一个协变散度算符得到
$$\nabla_{\lambda}[\nabla_{\mu},\nabla_{\nu}]\phi_{\sigma}=\nabla_{\lambda}\left(R_{~\sigma\mu\nu}^{\rho}\phi^{\sigma}\right)=\left(\nabla_{\lambda}R_{~\sigma\mu\nu}^{\rho}\right)\phi_{\rho}+R_{~\sigma\mu\nu}^{\rho}\left(\nabla_{\lambda}\phi_{\rho}\right)$$
还有
$$[\nabla_{\mu},\nabla_{\nu}]\nabla_{\lambda}\phi_{\sigma}=R_{~\lambda\mu\nu}^{\rho}\nabla_{\rho}\phi_{\sigma}+R_{~\sigma\mu\nu}^{\rho}\nabla_{\lambda}\phi_{\rho}$$
上面两式相减得到
$$[\nabla_{\lambda},[\nabla_{\mu},\nabla_{\nu}]]\phi_{\sigma}=\left(\nabla_{\lambda}R_{~\sigma\mu\nu}^{\rho}\right)\phi_{\rho}-R_{~\lambda\mu\nu}^{\rho}\nabla_{\rho}\phi_{\sigma}$$
轮换指标($\lambda\leftarrow\mu$,$\mu\leftarrow\nu$,$\nu\leftarrow\lambda$)得到
$$[\nabla_{\mu},[\nabla_{\nu},\nabla_{\lambda}]]\phi_{\sigma}=\left(\nabla_{\mu}R_{~\sigma\nu\lambda}^{\rho}\right)\phi_{\rho}-R_{~\mu\nu\lambda}^{\rho}\nabla_{\rho}\phi_{\sigma}$$
轮换指标($\mu\leftarrow\nu$,$\nu\leftarrow\lambda$,$\lambda\leftarrow\mu$)得到
$$[\nabla_{\nu},[\nabla_{\lambda},\nabla_{\mu}]]\phi_{\sigma}=\left(\nabla_{\nu}R_{~\sigma\lambda\mu}^{\rho}\right)\phi_{\rho}-R_{~\nu\lambda\mu}^{\rho}\nabla_{\rho}\phi_{\sigma}$$
根据$[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0$,我们将上面三式相加
$$\begin{aligned}&\left\{[\nabla_{\lambda},[\nabla_{\mu},\nabla_{\nu}]]+[\nabla_{\mu},[\nabla_{\nu},\nabla_{\lambda}]]+[\nabla_{\nu},[\nabla_{\lambda},\nabla_{\mu}]]\right\}\phi_{\sigma}\\=&\left(\nabla_{\lambda}R_{~\sigma\mu\nu}^{\rho}+\nabla_{\mu}R_{~\sigma\nu\lambda}^{\rho}+\nabla_{\nu}R_{~\sigma\lambda\mu}^{\rho}\right)\phi_{\rho}-\left(R_{~\lambda\mu\nu}^{\rho}+R_{~\mu\nu\lambda}^{\rho}+R_{~\nu\lambda\mu}^{\rho}\right)\nabla_{\rho}\phi_{\sigma}=0\end{aligned}$$
根据逆变曲率张量循环等式
$$R_{~\lambda\mu\nu}^{\rho}+R_{~\mu\nu\lambda}^{\rho}+R_{~\nu\lambda\mu}^{\rho}=0$$
而协变矢量$\phi_{\sigma}$取值是任意的,因此可证明Bianchi恒等式
$$\nabla_{\lambda}R_{~\sigma\mu\nu}^{\rho}+\nabla_{\mu}R_{~\sigma\nu\lambda}^{\rho}+\nabla_{\nu}R_{~\sigma\lambda\mu}^{\rho}=0$$
(上式的证明用$SO(N)$规范场张量$F_{\mu\nu}^{ab}$证明十分简单。)