补充一下:
$\text{Cauchy-Riemann}$方程可以用$\text{Wirtinger}$导数写作:
$$\frac{\partial f}{\partial \overline{z}}=0$$
或简记为
$$\overline{\partial}f=0$$
而方程
$$\overline{\partial}f=g$$
被称为共轭$\text{partial}$方程或$\overline{\partial}\text{-}$方程,有时也广义地称作$\text{Cauchy-Riemann}$方程。
$\overline{\partial}\text{-}$方程在平面域,拟凸域和完备凯勒流形上的弱解唯一性以及估计(霍尔曼德尔估计)已经被证明和发现。