设$∠A,∠B,∠C所对的边分别是a,b,c,$则原式等于$\frac{b}{a}+\frac{a}{b}+\frac{c^2}{a·b}=\frac{a^2+b^2+c^2}{ab}$
由余弦定理得$a^2+b^2-c^2=2ab·cosC$,又因为$S_{∆ABC}=\frac{1}{2}c^2=\frac{1}{2}ab·sinC$,所以$c^2=ab·sinC$
所以$\frac{a^2+b^2+c^2}{ab}=2(sinC+cosC),$因此当且仅当$C=\frac{π}{4}$时,原式有最大值$2\sqrt{2}$