数学 求都法则证明(1)

法则一: $[u(x)±v(x)]'=u'(x)±v'(x) $
证:
$[u(x)±v(x)]' $
$=\lim_{\Delta x\to0} {\frac{[u(x+\Delta x)±v(x+\Delta x)]-[u(x)±v(x)]} {\Delta x}}$
$=\lim_{\Delta x\to0} {\frac{u(x+\Delta x)-u(x)} {\Delta x}} ± \lim_{\Delta x\to0} {\frac{v(x+\Delta x)-v(x)} {\Delta x}}$
$=u'(x)±v'(x) $
法则一可简写为$(u±v)'=u'±v' $
共1条回复
时间正序