数学 Sum of Squares

三元不等式的SOS方法
$f\left( a,b,c\right) =S_{a}\left( b-c\right) ^{2}+S_{b}\left( c-a\right) ^{2}+S_{c}\left( a-b\right) ^{2}$
若$f$满足下列条件之一,则$f\geq 0$
$\left( 1\right) S_{a},S_{b},S_{c}\geq 0$
$\left( 2\right) a\geq b\geq c,S_{b}\geq 0,S_{a}+S_{b}\geq 0,S_{c}+S_{b}\geq 0$
$\left( 3\right) a\geq b\geq c,S_{b}\leq 0,S_{a}+2S_{b}\geq 0,S_{c}+2S_{b}\geq 0$
证:(增量法) 设$a\geq b\geq c,\quad b-c=k,\quad a-b=h,\quad k,h\geq 0$
$\Rightarrow f=S_{a}k^2+S_{b}\left( k+h\right)^2+S_{c}h^2$
$\left( 2\right)若S_{b}\geq 0,\Rightarrow f\geq S_{a}k^2+S_{b}\left( k^2+h^2\right)+S_{c}h^2$
$ \qquad\qquad\qquad\quad\quad =\left( S_{a}+S_{b}\right)k^2+S_{c}h^2\geq 0$
$\left( 3\right)若S_{b}\leq 0,\Rightarrow f\geq S_{a}k^2+S_{b}\cdot2\left( k^2+h^2\right)+S_{c}h^2$
$ \qquad\qquad\qquad\quad\quad =\left( S_{a}+2S_{b}\right)k^2+\left( S_{c}+2S_{b}\right)h^2\geq 0$