现在公布一下来自卷怪的解答:
$\sin x \cdot \ln(\sqrt{2}\sin x)+\cos x \cdot \ln(\sqrt{2}\cos x)≥0$
$⇔\tan x\cdot \ln(\sqrt{2}\sin x)+\ln(\sqrt{2}\cos x)≥0$
$⇔2(\tan x\cdot \ln(\sqrt{2}\sin x)+\ln(\sqrt{2}\cos x))≥0$
$⇔\tan x\cdot \ln(2\sin^2 x)+\ln(2\cos^2 x) ≥0$
$⇔\tan x\cdot \ln \frac{2\tan^2 x}{1+\tan^2 x}+\ln \frac{2}{1+\tan^2 x}≥0$
$记f(t)=t\ln\frac{2t^2}{1+t^2}+\ln\frac{2}{1+t^2},t\in[0,+∞)$
$则f'(t)=\ln\frac{2t^2}{1+t^2}+t(\frac{1+t^2}{2t^2}\frac{(4t)(1+t^2)-(2t^2)(2t)}{(1+t^2)^2})+\frac{1+t^2}{2}\frac{-2t}{(1+t^2)^2}$
$=\ln\frac{2t^2}{1+t^2}+\frac{2-2t}{1+t^2}$
$f''(t)=\frac{1+t^2}{2t^2}\frac{(4t)(1+t^2)-(2t^2)(2t)}{(1+t^2)^2}+\frac{(-2)(1+t^2)-(2-2t)(2t)}{(1+t^2)^2}$
$=\frac{2(1+t)(1-t)^2}{t(1+t^2)^2}≥0$
$故f'(t)递增,故t\in(0,1]时,f'(t)≤f'(1)=0,f(t)递减,f(t)≥f(1)=0;t\in [1,+∞)时,f'(t)≥f'(1)=0,f(t)递增,f(t)≥f(1)=0$
$故不论怎样,f(t)≥0,特别的,f(\tan x)≥0,知原式成立$