数学 test123

- 传东西的帖子(纯纯用来搞实验的,此帖子无意义,不用往下看)
#include <iostream>
int main(){
int a,b;
std::cin>>a>>b;
std::cout<<a<<b<<std::endl;
return 0;
}
- 321\
- 321/
- 23
45
-0
$$\begin{bmatrix}3&5&8.3+21\end{bmatrix}$$
$\sum_{3}^{5} (i^3)$
可以将
$$\sum_{i=1}^{n} {\sum_{j=i+1}^{n}{a_ia_j}}$$
列成:
$$\begin{aligned}a_1a_2+a_1a_3+a_1a_4+a_1a_5+...+a_1a_n\ a_2a_3+a_2a_4+a_2a_5+...+a_2a_n\ a_3a_4+a_3a_5+...+a_3a_n\ a_4a_5+...+a_4a_n\ ...\end{aligned}$$
补全得到:
$$\begin{aligned}\color{green}{a_1^2}+\color{black}a_1a_2+a_1a_3+a_1a_4+a_1a_5+...+a_1a_n\ \color{red}{a_2a_1}+\color{green}{a_2^2}+\color{black}a_2a_3+a_2a_4+a_2a_5+...+a_2a_n\ \color{red}{a_3a_1+a_3a_2}+\color{green}{a_3^2}+\color{black}a_3a_4+a_3a_5+...+a_3a_n\ \color{red}{a_4a_1+a_4a_2+a_4a_3}+\color{green}{a_4^2}+\color{black}a_4a_5+...+a_4a_n\ ...\end{aligned}$$
故可以得到:
$$2\sum_{i=1}^{n} {\sum_{j=i+1}^{n}{a_ia_j}}+\sum_{i=1}^{n}{a_i^2}=(\sum_{i=1}^{n}{a_i})^2$$
由于:
$$\bar a=\frac{1}{n}\sum_{i=1}^{n}{a_i}$$
$$s^2=\frac{1}{n}\sum_{i=1}^{n}{(a_i-\bar a)^2}$$
故:
$$\begin{aligned}ns^2&=\sum_{i=1}^{n}{(a_i-\bar a)^2}\&=\sum_{i=1}^{n}{(a_i^2-2\bar aa_i+\bar a^2)}\&=\sum_{i=1}^{n}{a_i^2}-\sum_{i=1}^{n}{2\bar aa_i}+\sum_{i=1}^{n}{\bar a^2}\&=\sum_{i=1}^{n}{a_i^2}-2n\bar a^2+n\bar a^2\&=\sum_{i=1}^{n}{a_i^2}-n\bar a^2\end{aligned}$$
代入得到
$$2\sum_{i=1}^{n} {\sum_{j=i+1}^{n}{a_ia_j}}+\sum_{i=1}^{n}{a_i^2}=(\sum_{i=1}^{n}{a_i})^2$$
$$2\sum_{i=1}^{n} {\sum_{j=i+1}^{n}{a_ia_j}}+ns^2+n\bar a^2=n^2\bar a^2$$
$$\sum_{i=1}^{n} {\sum_{j=i+1}^{n}{a_ia_j}}=\frac{n^2\bar a^2-n\bar a^2-ns^2}{2}$$
所以答案为:
$$\sum_{i=1}^{n} {\sum_{j=i+1}^{n}{a_ia_j}}=\frac{n^2\bar a^2-n\bar a^2-ns^2}{2}$$
(建议别删,后面找找有没有什么好玩的)
(这是一张gif,看看会不会上传成功)
(以上图片均转载自网络,侵权删)