质 物理 快速上手微积分附录 :公式卡

没错就是积分表和其他东东
希望可以帮到大家
使用$D_x来表示求导$
$1.D_x x^r=rx^{r-1}$
$2.D_x |x|= \frac{|x|}{x}$
$3.D_x \sin x= \cos x $
$4.D_x \cos x=-\sin x$
$5.D_x \tan x=\sec ^2 x$
$6.D_x \cot x=-\csc^2 x$.
$7.D_x \sec x=\sec x \tan x$.
$8.D_x \csc x=-\csc x\cot x$.
$9.D_x \sinh x=\cosh x$.
$10. D_x \coth x=-csch^2 x$
$11. D_x \cosh x=\sinh x$.
$12.D_x sech x=-sech x\tanh x$.
$13.D_x \tanh x=\text{sech}^2x$.
$14.D_x csch x=-csch x coth x$.
$15. D_x In x=\frac{1}{x}$
$16.D_x \log_a x=\frac{1}{x In a}$.
$17.D_x e^x=e^x$.
$18.D_x a^x =a^x In a$.
$19.D_x \sin^{-1}x=\frac{1}{\sqrt{1-x^2}}$.
$20.D_x \cos^{-1}x=\frac{-1}{\sqrt{1-x^2}}$
$21.D_x \tan^{-1}x=\frac{1}{\sqrt{1+x^2}}$.
$22.D_x \sec^{-1} x=\frac{-1}{|x| \sqrt{x^2-1}}$
2.积分公式:
$1.\int udv=uv-\int vdu$.
$2.\int u^ndu= \frac{1}{n+1} u^{n+1}+C ,n≠1$
$3.\int \frac{1}{u} \text du=\text{In}|u|+C$.
$4.\int \text e^u du=\text e^u+C$
$5.\int a^u du=\frac{a^u}{\text{In}a}+C$
$6.\int \sin u du=-\cos u+C$
$7.\int \cos udu=\sin u+C$.
$8.\int \sec^2 udu=\tan u+C$
$9. \int \csc^2 udu=-\cot u+C$.
$10.\int \sec u\tan udu=\sec u+C$.
$11.\int \csc u\cot udu=\sec u+C$.
$12.\int \tan udu=-\text{In}|\cos u|+c$
$13.\int \cot udu=\text{In}|\sin u|+C$.
$14.\int \sec udu=\text{In}|\sec u+\tan u| +C$.
$15.\int \csc udu=\text{In}|\csc u-\cot u|+C$.
$16.\int \frac{1}{\sqrt{a^2-u^2}}du=\sin^{-1}\frac{u}{a}+C$.
$17.\int \frac{1}{a^2+u^2}du=\frac{1}{a} tan^{-1}\frac{u}{a}+C$
$18.\int \frac{1}{a^2-u^2}du=\frac{1}{2a}\text{In}|\frac{u+a}{u-a}|+C$.
$19.\int \frac{1}{u\sqrt{u^2-a^2}} du=\frac{1}{a}\sec^{-1}|\frac{u}{a}|+C$
(补:双曲函数)
$\sinh x=\frac{1}{2}(e^x-e^{-x})$
$\cosh x=\frac{1}{2}(e^x+e^{-x}$
$\tanh x=\frac{ \sinh x}{\cosh x}$
$\text{sech}x=\frac{1}{\sinh x}$
$\text{coth}x=\frac{\text{coth}x}{\sinh x}$
$\text{csch}x=\frac{1}{\sinh x}$
3.级数
$\frac{1}{1-x}=1+x+x^2+x^3+...$
$\text{In}(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}$
$\tan^{-1}x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}...$
$e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}...$
$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}\frac-{x^7}{7!}...$
$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}...$
$\sinh x=x+\frac{x^3}{3}+\frac{x^5}{5}+\frac{x^7}{7},,,$
$\cosh x=1+\frac{x^2}{2}+\frac{x^4}{4}+\frac{x^6}{6}...$
$(1+x)^n=1+\begin{pmatrix}n\\1\end{pmatrix}x+\begin{pmatrix}n\\2\end{pmatrix} x^2...$
4.所有的积分公式(共113条)
4.1基本公式
同上的公式
4.2三角公式
$20.\int \sin^2 udu=\frac{1}{2}u-\frac{1}{4}\sin 2u+C$
$21.\int \cos^2 udu=\frac{1}{2}+\frac{1}{4}\sin2u+C$
$22.\int \tan^2 udu=\tan u-u+C$
$23.\int \cot^2 udu=-\cot u-u+C$
$24.\int \sin^3 udu=-\frac{1}{3}(2+\sin^2u)\cos u+C$
$25.\int \cos^3 udu=\frac{1}{3}(2+\cos^2u)sinu+C$
$26.\int \tan^3 udu=\frac{1}{2}\tan^2u+\text{In}|\cos u|+C$
$27.\int \cot^3 udu=-\frac{1}{2}\cot^2u-\text{In}|\sin u|+C$
$28.\int \sec^3 udu=\frac{1}{2}\sec u\tan u+\frac{1}{2}\text{In}|\sec u+\tan u|+C$
$29.\int \csc^3 udu=\frac{1}{2}\csc u\cot u+\frac{1}{2}\text{In}|\csc u+\cot u|+C$
$30.\int \sin au\sin budu=\frac{\sin (a-b)u}{2(a-b)}-\frac{\sin (a+b)u}{2(a+b)}+C$
$31.\int \cos au\cos budu=\frac{\sin (a-b)u}{2(a-b)}+\frac{\sin (a+b)u}{2(a+b)}+C$
$32.\int \sin au \cos budu=-\frac{\cos(a-b)u}{2(a-b)}-\frac{cos(a+b)u}{2(a+b)}+C$
$33.\int \sin^n udu=-\frac{1}{n}\sin^{n-1}u\cos u+\frac{n-1}{n}\int \sin^{n-2}udu$
$34.\int \cos^n udu=\frac{1}{n}\cos^{n-1}u\sin u+\frac{n-1}{n} \int \cos^{n-2}udu$
$35.\int \tan^n udu=\frac{1}{n-1}\tan^{n-1}u-\int \tan^{n-2} udu$
$36.\int \cot^n udu=\frac{-1}{n-1}\cot^{n-1}u-\int \cot^{n-2} udu$
$37.\int \sec^n udu=\frac{1}{n-1}\sec^{n-2}u\tan u+\frac{n-2}{n-1}\int \sec^{n-2}udu$
$38.\int \csc^n udu=\frac{-1}{n-1}\csc^{n-2}u\cot u+\frac{n-2}{n-1}\int \csc^{n-2}udu$
$39a.\int \sin^nu\cos^mudu=-\frac{\sin^{n-1}u\cos^{m+1}u}{n+m}+\frac{n-1}{n+m}\int \sin^{n-2}u\cos^mudu$
$39b.\int \sin^nu\cos^mudu=\frac{\sin^{n+1}u\cos^{m-1}u}{n+m}+\frac{m-1}{n+m}\int \sin^nu\cos^{m-2}udu$
$40.\int u\sin udu=\sin u-u\cos u+C$
$41.\int u\cos udu=\cos u+u\sin u+C$
$42.\int u^n\sin udu=-u^n\cos u+n\int u^{n-1}\cos udu$
$43.\int u^n\cos udu=u^n\sin u-n\int u^{n-1}\sin udu$
含有$\sqrt{u^2\pm a^2}$的公式
$44.\int \sqrt{u^2\pm a^2}udu=\frac{u}{2}\sqrt{u^2\pm a^2}\pm \frac{a^2}{2}\text{In}|u+\sqrt{u^2\pm a^2}|+C$
$45.\int \frac{du}{\sqrt{u^2\pm a^2}}=\text{In}|u+\sqrt{u^2\pm a^2}|+C$
$46.\int \frac{\sqrt{u^2+a^2}}{u}du=\sqrt{u^2+a^2}-a\text{In}(\frac{a+\sqrt{u^2+a^2}}{u})+C$
$47.\int \frac{\sqrt{u^2-a^2}}{u}du=\sqrt{u^2-a^2}-a\sec^{-1}\frac{u}{a}+C$