$\because \{x\} + \{-x\} = \begin{cases}1, x \notin \mathbb{Z}\\0, x \in \mathbb{Z} \end{cases} ,$
$\therefore \{x\} + \{-x\} \leqslant 1.$
$令 f_i(x) = \{x_i - x_1\} + \{x_i - x_2\} + \cdots + \{x_i - x_n\}$
$\Rightarrow \sum_{i = 1}^{n} f_i(x) = \sum_{1 \leqslant i \lt j \leqslant n} (\{x_i - x_j\} + \{-x_i + x_j\}) \leqslant \sum_{1 \leqslant i \lt j \leqslant n} 1 = \binom{2}{n} = \dfrac{n(n - 1)}{2}$
$由抽屉原理:$
$\exists k \in [1, n], f_k(x) \leqslant \dfrac{1}{n}\binom{2}{n} = \dfrac{n - 1}{2}$
$令 x = x_k, 可得:$
$\{x - x_1\} + \{x - x_2\} + \cdots + \{x - x_n\} \leqslant \dfrac{n - 1}{2}$
$证毕。$