K维理想气体麦克斯韦速率分布律

物理
K维理想气体麦克斯韦速率分布律

用户头像
更新于2024-7-24 03:25:05

理想气体在$k$维$(k≠0)$下的麦克斯韦速率分布律:$g(v^2)=(\dfrac{m}{2k_BπT})^{\dfrac{k}{2}}e^{-\dfrac{m}{2k_BT}v^2}$


因为没有外场,速率分布应为各项同性:$f(\vec{v})=g(v^2)=g(\sum\limits_{i=1}^{k}v^2_i)$

k个正交轴方向上的速度应相互独立,故有:$g(\sum\limits_{i=1}^{k}v^2_i)=\prod_{i=1}^{k}g(v^2_i)$

两边取自然对数化积为和:$\operatorname{ln}{g(v^2)}=\sum\limits_{i=1}^{k}\operatorname{ln}{g(v^2_i)}$

对$v_i^2$分别偏导易得:$\dfrac{∂\operatorname{ln}{g(v^2)}}{∂v^2}=\dfrac{∂\operatorname{ln}{g(v^2_i)}}{∂v^2_i}=const$

为使最终的函数形式满足概率的归一化条件,令$const=-B$有:$\operatorname{ln}{g(v^2)}=A-Bv^2$

取指数得:$g(v^2)=Ce^{-Bv^2}$


当$k$为偶数,设$k=2N+2$

速率空间中$k$维球的表面积为$\dfrac{2}{N!}π^{N+1}v^{2N+1}$


归一化条件:$\int_{0}^{+∞}Ce^{-Bv^2}\dfrac{2}{N!}π^{N+1}v^{2N+1}dv=1$

能量:$\int_{0}^{+∞}Ce^{-Bv^2}\dfrac{1}{2}mv^2\dfrac{2}{N!}π^{N+1}v^{2N+1}dv=\dfrac{2N+2}{2}k_BT$


提取常数项:$C\dfrac{2}{N!}π^{N+1}\int_{0}^{+∞}v^{2N+1}e^{-Bv^2}dv=1$

提取常数项:$C\dfrac{1}{N!}π^{N+1}m\int_{0}^{+∞}v^{2N+3}e^{-Bv^2}dv=\dfrac{2N+2}{2}k_BT$


高斯积分得:$C\dfrac{2}{N!}π^{N+1}·\dfrac{N!}{2B^{N+1}}=1$

化简得:$C\dfrac{π^{N+1}}{B^{N+1}}=1$ $①$


高斯积分得:$C\dfrac{1}{N!}π^{N+1}m·\dfrac{(N+1)!}{2B^{N+2}}=\dfrac{2N+2}{2}k_BT$

化简得:$C\dfrac{π^{N+1}}{B^{N+2}}=\dfrac{2k_BT}{m}$ $②$


联立$①②$得:

$B=\dfrac{m}{2k_BT}$

$C=(\dfrac{m}{2k_BπT})^{N+1}$


代入得:

$g(v^2)=(\dfrac{m}{2k_BπT})^{N+1}e^{-\dfrac{mv^2}{2k_BT}}$

$G(v^2)=\dfrac{2}{N!}π^{N+1}v^{2N+1}(\dfrac{m}{2k_BπT})^{N+1}e^{-\dfrac{mv^2}{2k_BT}}$


当$k$为奇数,设$k=2N+1$

速率空间中$k$维球的表面积为$\dfrac{2^{2N+1}N!}{(2N)!}π^{N}v^{2N}$


归一化条件:$\int_{0}^{+∞}Ce^{-Bv^2}\dfrac{2^{2N+1}N!}{(2N)!}π^{N}v^{2N}dv=1$

能量:$\int_{0}^{+∞}Ce^{-Bv^2}\dfrac{1}{2}mv^2\dfrac{2^{2N+1}N!}{(2N)!}π^{N}v^{2N}dv=\dfrac{2N+1}{2}k_BT$


提取常数项:$C\dfrac{2^{2N+1}N!}{(2N)!}π^{N}\int_{0}^{+∞}v^{2N}e^{-Bv^2}dv=1$

提取常数项$C\dfrac{2^{2N}N!}{(2N)!}π^{N}m\int_{0}^{+∞}v^{2N+2}e^{-Bv^2}dv=\dfrac{2N+1}{2}k_BT$


高斯积分得:$C\dfrac{2^{2N+1}N!}{(2N)!}π^{N}·\dfrac{(2N-1)!\sqrt[2]{π}}{2^{2N}(N-1)!B^{N+\dfrac{1}{2}}}=1$

化简得:$C\dfrac{π^{N+\dfrac{1}{2}}}{B^{N+\dfrac{1}{2}}}=1$ $①$


高斯积分得:$C\dfrac{2^{2N}N!}{(2N)!}π^{N}m·\dfrac{(2N+1)!\sqrt[2]{π}}{2^{2N+2}N!B^{N+\dfrac{3}{2}}}=\dfrac{2N+1}{2}k_BT$

化简得:$C\dfrac{π^{N+\dfrac{1}{2}}}{B^{N+\dfrac{3}{2}}}=\dfrac{2k_BT}{m}$ $②$


联立$①②$得:

$B=\dfrac{m}{2k_BT}$

$C=(\dfrac{m}{2k_BπT})^{N+\dfrac{1}{2}}$


代入得:

$g(v^2)=(\dfrac{m}{2k_BπT})^{N+\dfrac{1}{2}}e^{-\dfrac{m}{2k_BT}v^2}$

$G(v^2)=\dfrac{2^{2N+1}N!}{(2N)!}π^{N}v^{2N}(\dfrac{m}{2k_BπT})^{N+\dfrac{1}{2}}e^{-\dfrac{m}{2k_BT}v^2}$


综上:$g(v^2)=(\dfrac{m}{2k_BπT})^{\dfrac{k}{2}}e^{-\dfrac{m}{2k_BT}v^2}$

收起
98
80
查看该帖子的所有回复
用户头像
用户头像
质心小姐姐
1年前

恭喜夏夏上质选!夏夏好棒!!!(๑•̀ㅂ•́)و✧